Article ID Journal Published Year Pages File Type
1265563 Organic Electronics 2008 10 Pages PDF
Abstract

We have synthesized a novel fully soluble and low-temperature processable polyimide gate insulator (KSPI) through the one-step condensation polymerization of the monomers 5-(2,5-dioxytetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride and 4,4-diaminodiphenylmethane. Fully imidized KSPI was found to be completely soluble in organic solvents such as N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), γ-butyrolactone, dimethylsulfoxide (DMSO), and 2-butoxyethanol. Thin films of KSPI can be fabricated at only 150 °C and a pentacene OTFT with KSPI as a gate dielectric was found to exhibit a field effect mobility of 0.22 cm2/V s. To obtain a high performance organic thin-film transistor (OTFT), the KSPI surface was modified in our new technique by hybridization with a non-polar side chain containing a polyimide insulator (PI). The carrier mobility of a pentacene OTFT with a hybridized polyimide gate insulator (BPI-3) was found to be 0.92 cm2/V s. Our new low-temperature processable polyimides show promise as gate dielectrics for OTFTs.

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , , ,