Article ID Journal Published Year Pages File Type
1266075 Procedia Food Science 2016 5 Pages PDF
Abstract

A continuing goal in predictive microbiology is models directly based on physiological behavior. Buchanan et al.1 hypothesized that (1) the curvilinear lag/exponential transition represents the variability of cells in the adjustment (ta) and metabolic (tm) periods, and (2) the exponential/stationary transition is determined by limiting nutrient diffusion rates. Nutritional shift trials were conducted to estimate E.coli K-12 growth. Lactase production time suggest that lactase gene translation occurs after completion of lag phase. Agitation rates and inoculum sizes both influenced the shape of the exponential/stationary phase transition. Monte Carlo simulations allowed the generation of sigmoidal growth curves while considering physiological events.

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, ,