Article ID Journal Published Year Pages File Type
1269301 Ultrasonics Sonochemistry 2016 7 Pages PDF
Abstract

•Synthesis of two 3D, porous Zn(II)-based metal–organic framework.•Evaluation of ultrasonic irradiation on MOFs morphologies.•Investigation of sonication time, concentration of initial reagents and speed of nucleation.•These nano-MOFs show high adsorption capacity in RhB removal.

Micro- and nano-rods and plates of two 3D, porous Zn(II)-based metal–organic frameworks [Zn(oba)(4-bpdh)0.5]n·(DMF)1.5 (TMU-5) and [Zn(oba)(4-bpmb)0.5]n (DMF)1.5 (TMU-6) were prepared by sonochemical process and characterized by scanning electron microscopy, X-ray powder diffraction and IR spectroscopy. These MOFs were synthesized using a non-linear dicarboxylate (H2oba = 4,4-oxybisbenzoic acid) and two linear N-donor (4-bpdh = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene and 4-bpmb = N1,N4-bis((pyridin-4-yl)methylene)benzene-1,4-diamine) ligands by ultrasonic irradiation. Sonication time and concentration of initial reagents influencing size and morphology of nano-structured MOFs, were also studied. Calcination of TMU-5 and TMU-6 at 550 °C under air atmosphere yields ZnO nanoparticles. TMU-5 and TMU-6 exhibited maximum percent adsorption of 96.2% and 92.8% of 100 ppm rhodamine B dye, respectively, which obeys first order reaction kinetics.

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , ,