Article ID Journal Published Year Pages File Type
1295343 Solid State Ionics 2006 5 Pages PDF
Abstract

Using Na2CO3 and Me(NO3)2 (Me = Ni, Co and Mn) as starting materials, the precursor of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium rechargeable batteries has been synthesized by carbonate co-precipitation. The precursor was mixed with Li2CO3 and heated in air. Thermogravimetric analysis (TG–DTA), laser particle size analysis, X-ray diffraction (XRD) and electron scanning microscopy (SEM) were employed to study the reaction process and the structures of the powders. The D50 of precursor was 2.509 μm and the distribution was relatively narrow. The optimum calcination temperature was 850–900 °C. Galvanostatic cell cycling and cyclic voltammetry were also used to evaluate the electrochemical properties. The initial discharge capacity for the powders calcined at 900 °C was about 180 mA h/g at room temperature when cycled between 2.8 and 4.3 V at 0.2 C rate.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,