Article ID Journal Published Year Pages File Type
1295404 Solid State Ionics 2006 5 Pages PDF
Abstract

The electrical properties of acceptor-doped Ca1−xZr0.99M0.01O3−δ (M = Mg2+, In3+) systems were investigated as a function of cation nonstoichiometry (0 ≤ x ≤ 0.05). The characterization was carried out using the impedance spectroscopy between 550 °C and 1100 °C in dry air. The contributions of the grain and grain boundary conductivity to the total conductivity were obtained from the impedance data. When the Ca deficiency (x) increased, the total conductivity rapidly decreased with the corresponding increase in activation energy. Although the grain conductivity increased slightly with increasing x, the total conductivity is mostly determined by the highly resistive grain boundary. With varying x, the activation energy of total conductivity showed the percolation behavior. The percolation threshold values vary according to the doped species. It may be due to the difference in concentration of oxygen vacancies of the specimens.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,