Article ID Journal Published Year Pages File Type
1295608 Solid State Ionics 2006 7 Pages PDF
Abstract

In the present study X-ray Photoelectron Spectroscopy (XPS) combined with in situ electrochemical and Kelvin probe measurements was used in order to get a deeper insight on the mechanism of the cation transport through NaY zeolite and the charge transfer through the Au electrode/zeolite interface. It is shown that by imposing a potential gradient across the NaY powder which is sandwiched between two electrodes, Na+ ions can be electrically transferred to or from the Au working electrode area, following the direction of the applied potential between the two electrodes. Two peaks corresponding to sodium species were detected by means of in situ XPS investigation during potential application. The first peak of Na1s photoelectrons with binding energy at 1072.2 ± 0.2 eV is attributed to Na adsorbed on the grounded Au electrode with its coverage remaining unchanged upon potential imposition. The second peak is directly associated with Na present in the zeolite and upon potential application its binding energy varies proportionally with the variation of the surface potential measured by Kelvin probe. Upon varying the potential from − 4 to + 4 V between the working and counter electrode, the Na+ concentration decreases by ca30% at the Au/zeolite interface. However the invariant amount of Na on the Au electrode under vacuum shows that the variation in Na+ concentration is not due to ionic transfer onto the Au surface but instead Na+ accumulation can be assumed at the Au/zeolite interface. On the other hand, current or potential application under O2 atmosphere promotes the electrocatalytic reaction of Na+ towards the formation of Na2O on the Au electrode surface.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,