Article ID Journal Published Year Pages File Type
1295701 Solid State Ionics 2015 7 Pages PDF
Abstract

•Phase breakdown of LSC infiltrated into LSCF/SDC cathodes is examined by TEM for the first time.•Electrochemical operation encourages cation diffusion between LSC and LSCF backbone•LSC decomposition modes are influenced by electrochemical operation of the SOFC•Co3O4 formed principally on electrochemically operated LSC infiltrate•Thermal exposure without electrochemical operation promotes coarsening of infiltrated LSC particles

Nanosized LSC electrocatalyst was infiltrated into a porous scaffold cathode composed of Sm2O3-doped CeO2 (SDC) and La0.6Sr0.4Co0.2Fe0.8O3 -δ (LSCF) in a commercial button solid oxide fuel cell (SOFC). To understand the stability of cathodes infiltrated with LSC, the infiltrated composite cells were subjected to both electrochemical operating and thermal aging states at 750 °C for 1500 h. Nanostructure and local chemistry evolution of La0.6Sr0.4CoO3 (LSC) infiltrated cathodes upon operation and aging were investigated by transmission electron microscopy. After operation, the LSC remained a cubic perovskite, and the crystal grains exhibit comparable size to as-infiltrated LSC grains. Inter-diffusion of Fe from the LSCF to a Fe-incorporated LSC layer developed on the LSCF backbone. However, only sharp interfaces were observed between LSC and SDC backbone in the as-infiltrated cathode and such interfaces remain after operation. The infiltrated LSC on the SDC backbone also retains granular particle morphology. Furthermore, newly grown Co3O4 nanocrystals were found in the operated cathode. After thermal aging, on the other hand, cation inter-diffusion across the interfaces of the infiltrate particles and the cathode backbones is less than that from the operated cells. The following hypothesis is proposed: Co3O4 forms on LSC arising from local charge balancing between cobalt and oxygen vacancies.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,