Article ID Journal Published Year Pages File Type
1296414 Solid State Ionics 2011 4 Pages PDF
Abstract

The intrinsic formation of polyatomic defects in Sc2(WO4)3-type structures is studied by Mott Littleton calculations and Molecular Dynamics simulations. Defects involving the WO42− tetrahedron are found to be energetically favorable when compared to isolated W and O defects. WO42− Frenkel and (2Sc3+, 3WO42−) Schottky defects exhibit formation energies of 1.23 eV and 1.97 eV, respectively and therefore may occur as intrinsic defects in Sc2(WO4)3 at elevated temperatures. WO42− vacancy and interstitial migration processes have been simulated by classical Molecular Dynamics simulations. The interstitial defect exhibits a nearly 10 times higher mobility (with a migration energy of 0.68 eV), than the vacancy mechanism (with a slightly higher migration energy of 0.74 eV) and thus should dominate the overall ionic conduction. Still both models reproduce the experimental activation energy (0.67 eV) nearly within experimental uncertainty.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,