Article ID Journal Published Year Pages File Type
1296496 Solid State Ionics 2011 9 Pages PDF
Abstract

The present work aims to explore the activity of Cu/CeO2 composites as anodic electrodes in direct iso-octane SOFCs. When the cell was operated as a membrane reactor, the effect of temperature, Pi-C8H18 and applied anodic overpotentials on the electrocatalytic activity and products' distribution, at both open and closed circuit conditions, was examined. Additionally, in situ DRIFT spectroscopy was carried out in order to correlate the performance of Cu/CeO2 with its surface chemistry during iso-octane decomposition. Under the “fuel cell” mode of operation, the electrochemical performance and stability of Cu/CeO2 were investigated by voltage–current density–power density and AC impedance measurements. The results reveal that at high anodic polarization conditions, carbon formation can be noticeably restricted (verified also by EDAX analysis), while H2 production was enhanced due to partial oxidation, steam reforming, dehydrogenation and water gas shift reactions. Achieved power densities were found to substantially increase both with temperature and Pi-C8H18, while minor performance degradation was indicated in the step-change tests, where the overall activity of Cu–CeO2 electrodes remained essentially unaffected.

Keywords
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,