Article ID Journal Published Year Pages File Type
1297621 Solid State Ionics 2006 7 Pages PDF
Abstract

High-quality crystalline MSn2 (M = Cr and Co) thin films have been successfully fabricated by reactive pulsed laser deposition. The physical and electrochemical properties of the as-deposited thin films have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), galvanostatic cycling and cyclic voltammetry (CV). XRD measurement indicates that the as-deposited thin films prepared at 400 °C consisted mainly of MSn2 (M = Cr and Co) with a small quantity of metal tin. The specific reversible capacities of CrSn2 and CoSn2 thin film electrodes are found to be 467 mA h/g and 465 mA h/g, respectively. A mechanism involving an irreversible decomposition of MSn2 (M = Cr and Co) and a classical alloying process of Sn is proposed. MSn2 (M = Cr and Co) as the starting anode materials for conversion to the Li–Sn alloy can improve its electrochemical performance with high reversible capacity and good stable cycle.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,