Article ID Journal Published Year Pages File Type
1297819 Solid State Ionics 2009 6 Pages PDF
Abstract

Structural phase transitions in BaCeO3 have been investigated with combination of differential scanning calorimetry (DSC), dilatometry and high temperature X-ray diffraction with high sensitivity and resolution. In DSC curve at heating procedures, baseline shift, endothermic peak and another baseline shift were observed at 260 °C, 385 °C and 895 °C, respectively. From DSC curve at cooling procedure, it was revealed that all the baseline shifts and peak were reversible. No hysteresis was observed in the both baseline shifts indicating second order phase transition at 260 °C and 895 °C with variation of specific heat capacity, ΔCp, of 10 J/mol K and 7 J/mol K, respectively; whereas the order of the phase transition at 385 °C was revealed to be the first since hysteresis was detected around 370–385 °C. Variation of enthalpy, ΔH, at the phase transition was 45 J/mol. High temperature X-ray diffraction measurements have revealed that the crystal structure of BaCeO3 changes from primitive orthorhombic perovskite through body-centered one, rhombohedral distorted one to cubic one around 280 °C, 400 °C and 900 °C, showing correspondence with DSC curves. Dependence of molar volume on temperature estimated from high temperature X-ray diffraction showed agreement with thermal expansion behavior observed with dilatometry.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,