Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1298636 | Solid State Ionics | 2009 | 5 Pages |
In this paper, we report on the mechanical properties of a La0.58Sr0.4Co0.2Fe0.8O3-δ perovskite material. We use ring-on-ring bending tests with disk-shaped samples and depth-sensitive micro-indentation. In particular, the temperature dependency of fracture stress and elastic behavior are addressed. The fracture load is measured to be ∼ 40% higher at room temperature (RT) than at 800 °C, which is due to the ferro-elasticity of material at RT. The stiffness shows an increase of about 50% above 600 °C and 700 °C in vacuum and air, respectively. The effect is attributed to a rhombohedral to cubic phase transition, which is not fully reversible upon cooling. The changes in phase composition with temperature are also confirmed by in-situ high temperature XRD. The transition appears to be associated with a change of heat capacity.