Article ID Journal Published Year Pages File Type
1299983 Coordination Chemistry Reviews 2007 13 Pages PDF
Abstract

This review deals with the formations, structures, and properties of transition metal and lanthanide clusters supported by thiacalix[n]arene and its oxidized derivatives, sulfinylcalix[4]arene and sulfonylcalix[4]arene. Each thiacalix[n]arene possesses donor atoms both on the lower rim position (phenol oxygen atoms) and on the cyclic framework itself (–S–, –SO–, or –SO2–), and behaves as a multidentate multi-nucleating ligand to support the formation of a phenoxo-bridged cluster core. For first row transition metals, calix[4]arenes offer a platform for assembling the metal ions via four fac-tridentate coordination sites, and planar tri- and tetra-nuclear clusters are formed. A larger and more flexible thiacalix[6]arene could bind up to five metal ions inside the coordination cavity formed when it adopts the pinched cone conformation. Sulfonylcalix[4]arene shows a strong affinity to lanthanide ions through phenoxo and sulfonyl oxygen donors, and yields a variety of cluster compounds involving di-, tetra-, octa-, and dodeca-nuclear cores, achieved by controlled synthetic conditions.

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , ,