Article ID Journal Published Year Pages File Type
1300228 Coordination Chemistry Reviews 2010 12 Pages PDF
Abstract

The use of DNA as a molecular wire in nanoscale electronic architectures would greatly benefit from its capability of sequence-specific self-assembly. Although single electrons and positive charges have been shown to be transmitted by natural DNA over a distance of several base pairs, the high ohmic resistance of unmodified oligonucleotides imposes a serious obstacle. Exchanging some or all of the Watson–Crick base pairs in DNA by metal complexes may solve this problem and evolve DNA-like materials with superior conductivity for future nano-electronic applications. The so-called metal–base pairs are formed from suitable transition metal ions and ligand-like nucleosides which are introduced into both of the two pairing strands by automated DNA synthesis. This review illustrates the basic concepts of metal–base pairing and highlights recent developments in the field.

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, ,