Article ID Journal Published Year Pages File Type
1309318 Inorganica Chimica Acta 2010 6 Pages PDF
Abstract

To test the synthetic utility of bis(tert-butylamido)cyclodiphosph(III)azanes as ligands we extended the coordination chemistry of these diamides from Group 4 to Group 14. The syntheses of compounds of the formula cis-[tBuNP(μ-tBuN)2PNtBu]ECl2, E = Si (1), Ge (2), Sn (3) and the solid-state structures of 1 and 3 are reported. Silicon tetrachloride reacted with dilithiobis(tert-butylamido)cyclodiphosph(III)azane to cleanly produce cis-[tBuNP(μ-tBuN)2PNtBu]SiCl2, but for the germanium and tin analogues the interaction of GeCl4 or SnCl4 with the diazastannylene cis-[tBuNP(μ-tBuN)2PNtBu]Sn proved to be a better method. Single-crystal X-ray studies on both 1 and 3 revealed that they had Cs-symmetric structures, the central element being coordinated by two amide nitrogens and two chlorides, in addition to being weakly coordinated by one of the cyclodiphosph(III)azane ring nitrogens. Using structural comparisons between crystallographically-independent 1a and 1b, between 1 and 3, and between 3 and its isomorphous zirconium analogue, the nature of this donor bond is discussed.

Graphical abstractSyntheses of Group 14 complexes of the type cis-[tBuNP(μ-tBuN)2PNtBu]ECl2, E = Si (1), Ge (2), Sn (3) and the solid-state structures of 1 and 3 are reported. Widely different intramolecular donor–acceptor bonds in two independent molecules of 1 helped to probe the importance of such bonds. Crystals of 3 are isomorphous with those of the Zr and Hf analogues, suggesting that these heterocyclic ligands are equally suitable for Group 4 and Group 14 metals.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, ,