Article ID Journal Published Year Pages File Type
1309546 Inorganica Chimica Acta 2009 7 Pages PDF
Abstract

The recently proposed high-yield synthesis of the 1,4-bis(5-tetrazolyl)benzene ligand (H2btb) allowed the preparation of three new metal organic frameworks, namely Ag2(btb), 1, Cu2(btb), 2, and Cu2(OH)2(btb), 3. These polycrystalline materials were fully characterised by spectroscopic, gas adsorption, thermal and diffraction methods, the latter revealing rather dense frameworks for 1 and 3. Despite many different synthetic approaches, 2 invariably gave a poorly resolved, but highly reproducible, powder diffraction trace, hampering a complete structural characterisation. Magnetic measurements performed on 3 showed that it behaves as an antiferromagnetic material, the r.t. magnetic moment per Cu atom being only 1.24μB. The reactivity of 1 was proved in excess of triphenylphosphine (PPh3), allowing the isolation of the dinuclear species 4, [(PPh3)3Ag]2(btb). An additional species 5, formulated as [(PPh3)Ag]2(btb), could be selectively isolated on varying the reaction conditions; at variance, pyrazine, in solution or in molten form, did not react with 1.

Graphical abstractThree polycrystalline metal organic frameworks containing the polytopic deprotonated 1,4-bis(5-tetrazolyl)benzene ligand have been prepared and fully characterised by analytical, magnetic, spectroscopic, gas adsorption and powder diffraction methods.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , , , , ,