Article ID Journal Published Year Pages File Type
1312903 Inorganica Chimica Acta 2006 4 Pages PDF
Abstract

As the greenhouse effect increases, the development of systems able to convert with high efficiency CO2 to energetically rich molecules owns a crucial weight in the technological and environmental domain. As catalyst, rhenium complexes, of the type fac-[Re(L)(CO)3Cl] (i.e. L = 2,2′-bipyridyl or 4,4′-bipyridyl), have attracted a large interest demonstrating promising catalytic properties. fac-[Re(v-bpy)(CO)3Cl]-based polymer deposited onto a solid support has been already investigated as heterogeneous catalyst in the reduction of CO2. Here, we deposited by electrochemical polymerization fac-[Re(v-bpy)(CO)3Cl] onto a nanocrystalline TiO2 film on glass and we investigated by cyclic voltammetry the properties of such heterogeneous catalyst in the electrochemical reduction of CO2. We demonstrated that the nanoporous nature of the substrate allows to increase the two-dimensional number of redox sites per surface area and hence to get a significant enhancement of the catalytic yield.

Graphical abstractThis study demonstrated the improved efficiency of the electrocatalytic reduction of CO2 obtained by depositing a fac-[Re(v-bpy)(CO)3Cl]-based polymer onto nanoporous TiO2. The introduction of a nanoporous substrate is a simple and promising way to enhance the efficiency of electro- (or photo-) catalytic heterogenous devices.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , ,