Article ID Journal Published Year Pages File Type
1312920 Inorganica Chimica Acta 2006 6 Pages PDF
Abstract

Quantitative 31P{1H} NMR spectroscopic studies demonstrate that dichloro(2,4,6-tribromophenoxy)(2,2′-biphenoxy)phosphorane, (TBPO)(DP)PCl2, quantitatively converts poly(1,12-dodecylene phosphonate) into the corresponding poly(1,12-dodecylene chlorophosphite). NMR analysis indicates that the reaction is quantitative and the polymer remains intact. The poly(1,12-dodecylene chlorophosphite) chlorophosphite has been characterized by its reactions with acetonitrilepentacarbonyltungsten(0), W(CO)5(CH3CN), and subsequent nucleophilic displacement reactions at the coordinated chlorophosphite group. Quantitative 31P{1H} NMR spectroscopic studies demonstrate that the polymer chain remains intact throughout the coordination and nucleophilic reactions. All of the reactions are quantitative by NMR spectroscopy, the synthesis of the (TBPO)(DP)PCl2 and the subsequent nonoxidative chlorination reactions can be carried out in one pot, and the byproduct of the reaction does not interfere with the reactions or cleave the polymer chains.

Graphical abstractQuantitative 31P1H NMR spectroscopic studies demonstrate that dichloro(2,4,6-tribromophenoxy)(2,2′-biphenoxy)phosphorane, (TBPO)(DP)PCl2, quantitatively converts poly(1,12-dodecylene phosphonate) into the corresponding poly(1,12-dodecylene chlorophosphite). NMR analysis of the reaction indicates that the reaction is quantitative and the polymer remains intact. The poly(1,12-dodecylene chlorophosphite) chlorophosphite has been characterized by its reactions with W(CO)5(CH3CN), and subsequent nucleophilic displacement reactions at the coordinated chlorophosphite group.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , ,