Article ID Journal Published Year Pages File Type
1314951 Journal of Fluorine Chemistry 2009 6 Pages PDF
Abstract

This study evaluated the effectiveness of amorphous iron and aluminum mixed hydroxides in removing fluoride from aqueous solutions. A series of mixed Fe/Al samples were prepared at room temperature by co-precipitating Fe and Al mixed salt solutions at pH 7.5. The compositions (Fe:Al molar ratio) of the oxides were varied as 1:0, 3:1, 2:1, 1:1 and 0:1 and the samples were characterized by XRD, BET surface area and pHZPC. The XRD studies indicated the amorphous nature of the samples and Al(III) incorporation on Fe(III) hydroxides. Batch adsorption studies for fluoride removal on these materials showed that the adsorption capacities of the materials were highly influenced by solution pH, temperature and initial fluoride concentration. The rate of adsorption was fast and equilibrium was attained within 2 h. The adsorption followed first-order kinetics with intraparticle diffusion as the rate determining step for all the samples. The experimental data fitted well to both Langmuir and Freundlich adsorption isotherms. All samples exhibited very high Langmuir adsorption capacities; the sample with molar ratio 1 has shown maximum adsorption capacity of 91.7 mg/g. The thermodynamic parameters were determined to study the feasibility of the adsorption process.

Graphical abstractThe effect of solution pH on fluoride adsorption capacity was studied from 2.5 to 10 pH range. The adsorption process passes through maxima, and the optimum pH range increased with the increase of Al content in the Fe(OH)3 surface.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , ,