Article ID Journal Published Year Pages File Type
1316125 Journal of Inorganic Biochemistry 2010 7 Pages PDF
Abstract

The Cu(I) binding properties of the designed peptide C16C19-GGY are reported. This peptide was designed to form an α-helical coiled-coil but modified to incorporate a Cys-X-X-Cys metal-binding motif along its hydrophobic face. Absorption, emission, electrospray ionization mass spectrometry (ESI-MS), and circular dichroism (CD) experiments show that a 1:1 Cu-peptide complex is formed when Cu(I) is initially added to a solution of the monomeric peptide. This is consistent with our earlier study in which the emissive 1:1 complex was shown to exist as a peptide tetramer containing a tetranuclear copper cluster Kharenko et al. (2005) [11]. The presence of the tetranuclear copper center is now confirmed by ESI-MS which along with UV data show that this cluster is formed in a cooperative manner. However, spectroscopic titrations show that continued addition of Cu(I) results in the occupation of a second, lower affinity metal-binding site in the metallopeptide. This occupancy does not significantly affect the conformation of the metallopeptide but does result in a quenching of the 600 nm emission. It was further found that the exogenous reductant tris(2-carboxyethyl)phosphine (TCEP) can competitively inhibit the binding of Cu(I) to the low affinity site of the peptide, but does not interact with Cu(I) clusters.

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , ,