Article ID Journal Published Year Pages File Type
1316147 Journal of Inorganic Biochemistry 2011 8 Pages PDF
Abstract

Four bis(thiosemicarbazonate)gold(III) complexes (1–4) with a general formula [Au(L)]Cl {L = L1, glyoxal-bis(N4-methylthiosemicarbazone); L2, glyoxal-bis(N4-ethylthiosemicarbazone); L3, diacetyl-bis(N4-methylthiosemicarbazone); L4, diacetyl-bis(N4-ethylthiosemicarbazone)} were synthesised and screened for activity against the human immunodeficiency virus (HIV). Complexes 1–4 were characterised using 1H-NMR and IR spectroscopy; and their purity established by micronanalysis. Complex 3 inhibited viral infection of TZM-bl cells by 98% (IC50 = 6.8 ± 0.6 μM) at a non toxic concentration of 12.5 μM while complex 4 inhibited infection of these cells by 72 and 98% (IC50 = 5.3 ± 0.4 μM) at concentrations of 6.25 and 12.5 μM respectively. The mechanism of inhibition of infection in TZM-bl cells is presumably as a result of the cytostatic or anti-proliferative activity that was observed for complex 4 in real time cell electronic sensing (RT-CES) and carboxyflourescein succinimidyl ester (CFSE) analysis. Treatment of T lymphocytes from HIV infected individuals with 4 decreased CD4+ T cell expression (p = 0.0049) as demonstrated by multi-parametric flow cytometry without suppressing cytokine production. None of the ligands (L1–L4) demonstrated anti-viral activity, supporting the importance of metal (gold) complexation in these potential drugs. Complexes 3 and 4 were shown to have ideal lipophilicity values that were similar when shake flask (0.97 ± 0.5 and 2.42 ± 0.6) and in silico prediction (0.8 and 1.5) methods were compared. The activity and drug-like properties of complexes 3 and 4 suggests that these novel metal-based compounds could be combined with virus inhibitory drugs to work as cytostatic agents in the emerging class of anti-HIV drugs known as virostatics.

Graphical abstractInhibition of viral infectivity at cytostatic concentrations by two of four gold(III) thiosemicarbazonate compounds is due to effects on host cell mechanisms rather than direct anti-viral ability. These findings suggest the incorporation of these novel compounds in the emerging antiviral combination called virostatics which promise better resistance profiles.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , ,