Article ID Journal Published Year Pages File Type
1316313 Journal of Inorganic Biochemistry 2008 7 Pages PDF
Abstract
A family of cell surface and growth-related proteins, designated ECTO-NOX proteins, carry out both copper-dependent NADH and hydroquinone oxidation and protein disulfide-thiol interchange. The two activities they catalyze alternate to generate a regular period of 24 min in length for the constitutive CNOX. Unexpectedly, CuII salts alone in solution catalyze NADH (or hydroquinone) oxidation with a similar oscillatory pattern. Both patterns consist of five maxima, two of which at physiological temperatures are separated by an interval of 6 min and three of which are separated by intervals of 4.5 min [6 min + 4 (4.5 min)]. EXAFS and infrared spectroscopic measurements on pure water have shown previously that the ratios of ortho and para isomers of the hydrogen atoms of water occur on a similar time scale and produce regular patterns of unequally spaced oscillations similar to those observed with ECTO-NOX proteins and CuIICl2 solutions. Here, we provide results from CuIICl2 solutions that demonstrate that ECTO-NOX-/CuII-catalyzed oscillations in NADH oxidation are phased by exposure to low frequency electromagnetic fields.
Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , ,