Article ID Journal Published Year Pages File Type
1316657 Journal of Inorganic Biochemistry 2014 8 Pages PDF
Abstract

Polynuclear platinum complexes constitute a special class of hopeful antitumor agents. In this study, a Y-type monofunctional trinuclear platinum complex (MTPC) with 1,3,5-tris(pyridin-2-ylmethoxy)benzene, ammine and chloride as ligands was synthesized and characterized by 1H NMR and electrospray ionization mass spectrometry (ESI-MS). The DNA binding mode of MTPC was investigated using circular dichroism spectroscopy and gel electrophoresis, and the reactivity of MTPC towards glutathione was studied by 1H NMR and ESI-MS. The results show that MTPC can affect the conformation of calf-thymus DNA (CT-DNA) significantly and tends to form 1,4-GG rather than 1,2-GG intrastrand crosslinks, which are different from the instance of cisplatin. MTPC reacts with glutathione quite slowly in comparison with cisplatin because of the steric hindrance. The cytotoxicity of MTPC was tested on the human breast cancer cell line MCF-7, the human non-small-cell lung cancer cell line A549, and the human ovarian cancer cell line Skov-3 by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. MTPC is more potent than or comparable to cisplatin. The cellular inhibition mode of MTPC was examined by flow cytometry using MCF-7 cells. MTPC arrests the cell cycle mainly in G2 or M phase, while cisplatin arrests the cell cycle in S phase. Similar to cisplatin, MTPC kills the cells predominantly through an apoptotic pathway.

Graphical abstractPolynuclear platinum complex MTPC reacts with DNA to produce 1,4-GG intrastrand adduct and bring potent cytotoxicity against cancer cells. Unlike cisplatin, MTPC arrests the cell cycle mainly in G2 or M phase.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , , ,