Article ID Journal Published Year Pages File Type
1316814 Journal of Inorganic Biochemistry 2009 8 Pages PDF
Abstract

We have studied the protonation equilibria of a dicopper(II) complex [Cu2(μ-OH)(C21H33ON6)](ClO4)2·H2O, (1), in aqueous solution, its interactions with DNA, its cytotoxic activity, and its uptake in tumoral cells. C21H33ON6 corresponds to the ligand 4-methyl-2,6-bis[(6-methyl-1,4-diazepan-6-yl)iminomethyl]phenol. From spectrophotometric data the following pKa values were calculated 3.27, 4.80 and 6.10. Complex 1 effectively promotes the hydrolytic cleavage of double-strand plasmid DNA under anaerobic and aerobic conditions. The following kinetic parameters were calculated kcat of 2.73 × 10−4 s−1, KM of 1.36 × 10−4 M and catalytic efficiency of 2.01 s−1 M−1, a 2.73 × 107 fold increase in the rate of the reaction compared to the uncatalyzed hydrolysis rate of DNA. Competition assays with distamycin reveal minor groove binding. Complex 1 inhibited the growth of two tumoral cell lines, GLC4 and K562, with the IC50 values of 14.83 μM and 34.21 μM, respectively. There is a good correlation between cell growth inhibition and intracellular copper content. When treated with 1, cells accumulate approximately twice as much copper as with CuCl2. Copper–DNA adducts are formed inside cells when they are exposed to the complex. In addition, at concentrations that compound 1 inhibits tumoral cell growth it does not affect macrophage viability. These results show that complex 1 has a good therapeutic prospect.

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , , , , , , ,