Article ID Journal Published Year Pages File Type
1316824 Journal of Inorganic Biochemistry 2009 10 Pages PDF
Abstract

The DNA binding and in vitro cytotoxicity of the dinuclear Ir(III) polypyridyl complexes [{(η5-C5Me5)Ir(dppz)}2(μ-pyz)](CF3SO3)41 and [{(η5-C5Me5)Ir(pp)}2(μ-4,4′-bpy)](CF3SO3)42–4 (pp = dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), dipyrido[2,3-a:2′,3′-c]phenazine (dppz), benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine (dppn)) with the rigid bridging ligands pyrazine (pyz) or 4,4′-bipyridine (4,4′-bpy) have been studied. Stable intercalative binding into CT DNA (calf thymus DNA) is indicated for the dppz complexes 1 and 3 by induced negative CD bands at about 300 nm and large viscosity increases, with the individual measurements being in accordance with intrastrand bis-intercalation for 3 and mono-intercalation for 1. The observed interruption of specific interresidue NOE cross peaks from the relevant nucleobase H6/H8 protons to the sugar H2′/H2″ protons of the preceding nucleotide is in accordance with bis-intercalation of complex 3 between the C3G18 and G4C17 base pairs and the T5A16 and A6T15 base pairs of the decanucleotide d(5′-CGCGTAGGCC-3′). Complexes 1 and 3 exhibit a greatly improved uptake by HT-29 (colon carcinoma) cells and significantly improved in vitro IC50 values of 1.8 ± 0.1 and 3.8 ± 0.1 μM towards this cell line in comparison to the mononuclear complex [(η5-C5Me5)IrCl(dppz)](CF3SO3) (IC50 = 7.4 ± 0.9 μM).

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , , ,