Article ID Journal Published Year Pages File Type
1317650 Journal of Inorganic Biochemistry 2006 9 Pages PDF
Abstract

DNA can be damaged by various intracellular and environmental alkylating agents to produce alkylation base lesions. These base damages, if not repaired promptly, may cause genetic changes that lead to diseases such as cancer. Recently, it was discovered that some of the alkylation DNA base damage can be directly removed by a family of proteins called the AlkB proteins that utilize a mononuclear non-heme iron(II) and α-ketoglutarate as cofactor and cosubstrate. These proteins activate dioxygen and perform an unprecedented oxidative dealkylation of the alkyl adducts on DNA heteroatoms. This review summarizes the discovery of this activity and the recent research advances in studying this unique DNA repair pathway. The focus is placed on the chemical mechanism and function of these proteins.

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, ,