Article ID Journal Published Year Pages File Type
1322768 Journal of Organometallic Chemistry 2009 7 Pages PDF
Abstract

Four iron(II) and cobalt(II) complexes ligated by 2,6-bis(4-nitro-2,6-R2-phenylimino)pyridines, LMCl2 (1: R = Me, M = Fe; 2: R = iPr, M = Fe; 3: R = Me, M = Co; 4: R = iPr, M = Co) have been synthesized and fully characterized, and their catalytic ethylene polymerization properties have been investigated. Among these complexes, the iron(II) pre-catalyst bearing the ortho-isopropyl groups (complex 2) exhibited higher activities and produced higher molecular weight polymers than the other complexes in the presence of methylaluminoxane (MAO). A comparison of 2 with the reference non-nitro-substituted catalyst (2,6-bis(2,6-diisopropylphenylimino)pyridyl)FeCl2 (FeCat 5) revealed a modest increase of the catalytic activity and longer lifetime upon substitution of the para-positions with nitro groups (activity up to 6.0 × 103 kg mol−1 h−1 bar−1 for 2 and 4.8 × 103 kg mol−1 h−1 bar−1 for 5), converting ethylene to highly linear polyethylenes with a unimodal molecular weight distribution around 456.4 kg mol−1. However, the iron(II) pre-catalyst 1 on changing from ortho-isopropyl to methyl groups displayed much lower activities (over an order of magnitude) than 2 under mild conditions. As expected, the cobalt analogues showed relatively low polymerization activities.

Graphical abstractA series of iron(II) and cobalt(II) complexes ligated by 2,6-bis(4-nitro-2,6-R2-phenylimino)pyridines have been synthesized and characterized, which showed high catalytic ethylene polymerization activities in the presence of MAO. The electronic and steric effects of the ligands on the catalysts have been discussed.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , , ,