Article ID Journal Published Year Pages File Type
1325523 Journal of Organometallic Chemistry 2008 9 Pages PDF
Abstract

The reaction of diarylacetylenes with CoCl(PPh3)3 and sodium cyclopentadienylide or sodium carbomethoxycyclopentadienylide gave (η4-tetra-arylcyclobutadiene)(η5-cyclopentadienyl)cobalt and (η4-tetra-arylcyclobutadiene)(η5-carbomethoxycyclopentadienyl)cobalt, respectively, where aryl = para-XC6H4 (X = CF3, F, MeO). The reaction was unsuccessful for the synthesis of (η4-tetra(para-methoxyphenyl)cyclobutadiene)(η5-cyclopentadienyl)cobalt, which was synthesised instead from dicarbonyl(η5-cyclopentadienyl)cobalt. In all of the examples starting with CoCl(PPh3)3 an intermediate (η5-cyclopentadienyl)- or (η5-carbomethoxycyclopentadienyl)(triphenylphosphine)-2,3,4,5-tetraarylcobaltacyclopentadiene complex was isolated, and two examples were characterised by X-ray crystallography. Heating the (η5-cyclopentadienyl)- or (η5-carbomethoxycyclopentadienyl)(triphenylphosphine)-2,3,4,5-tetraarylcobaltacyclopentadiene complexes resulted in clean conversion to the corresponding metallocenes. The influence of the para-aryl substituents on the 1H NMR of the cyclopentadienyl moiety is tabulated, together with the influence of a range of R substituents in (η4-tetraphenylcyclobutadiene)(η5-RC5H4)cobalt (R = CO2Me, CH2OH, Me, CHO, CCH, CO2H, CN, CONHR1, 2-oxazolinyl, NH2, NHAc, HgCl, Br, I, SiMe3, SnMe3, Ph).

Graphical abstractThe complex CoCl(PPh3)3 is transformed into aryl substituted metallocenes 1–2via the intermediacy of cobaltacyclopentadiene complexes 9–10 (R = H, CO2Me, Ar = p-CF3C6H4, p-FC6H4, p-MeOC6H4). The influence of the aryl substituents and the R substituent (18 examples) on the 1H NMR spectra of the metallocenes is tabulated.Figure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , ,