Article ID Journal Published Year Pages File Type
1326031 Journal of Organometallic Chemistry 2008 5 Pages PDF
Abstract

Tetranitrile monomer (3) was synthesized by nucleophilic aromatic substitution of 1,5,9,13-tetrathiacyclohexadecane-3,11-diol (1) onto 4-nitrophthalonitrile (2). The metal-free phthalocyanine polymer (4) was prepared by the reaction of a tetranitrile monomer with 4-({11-[3-cyano-4-(cyanomethyl)phenoxy]-1,5,9,13-tetrathiacyclohexadecan-3-yl}oxy)phthalonitrile in 2-(dimethylamino)ethanol. Ni(II), Co(II), Cu(I)-phthalocyanine polymers were prepared by the reaction of the tetranitrile compound with the chlorides of Ni(II), Co(II) and Cu(I) in DMAE. Zn(II)-phthalocyanine polymer was prepared by the reaction of the tetranitrile compound with the acetates of Zn(II) in DMAE. The new compounds were characterized by a combination of IR, 1H NMR, 13C NMR, UV–Vis, elemental analysis and MS spectral data.

Graphical abstractTetranitrile monomer (3) was synthesized by nucleophilic aromatic substitution of 1,5,9,13-tetrathiacyclohexadecane-3,11-diol (1) onto 4-nitrophthalonitrile (2). The metal-free phthalocyanine polymer (4) was prepared by the reaction of a tetranitrile monomer with 4-({11-[3-cyano-4-(cyanomethyl)phenoxy]-1,5,9,13-tetrathiacyclohexadecan-3-yl}oxy)phthalonitrile in 2-(dimethylamino)ethanol. Ni(II), Co(II), Cu(I)-phthalocyanine polymers were prepared by the reaction of the tetranitrile compound with the chlorides of Ni(II), Co(II) and Cu(I) in DMAE. Zn(II)-phthalocyanine polymer was prepared by the reaction of the tetranitrile compound with the acetates of Zn(II) in DMAE. The new compounds were characterized by a combination of IR, 1H NMR, 13C NMR, UV–Vis, elemental analysis and MS spectral data.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , ,