Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1326646 | Journal of Organometallic Chemistry | 2011 | 8 Pages |
The ruthenium–tin complex, [Ru2(CO)4(SnPh3)2(μ-pyS)2] (1), the main product of the oxidative-addition of pySSnPh3 to Ru3(CO)12 in refluxing benzene, is [Ru(CO)2(pyS)(SnPh3)] synthon. It reacts with PPh3 to give [Ru(CO)2(SnPh3)(PPh3)(κ2-pyS)] (2) and further with Ru3(CO)12 or [Os3(CO)10(NCMe)2] to afford the butterfly clusters [MRu3(CO)12(SnPh3)(μ3-pyS)] (3, M=Ru; 4, M=Os). Direct addition of pySSnPh3 to [Os3(CO)10(NCMe)2] at 70 °C gives [Os3(CO)9(SnPh3)(μ3-pyS)] (5) as the only bimetallic compound, while with unsaturated [Os3(CO)8{μ3-PPh2CH2P(Ph)C6H4}(μ-H)] the previously reported [Os3(CO)8(μ-pyS)(μ-H)(μ-dppm)] (6) and the new bimetallic cluster [Os3(CO)7(SnPh3){μ-Ph2PCH2P(Ph)C6H4}(μ-pyS)[(μ-H)] (7) are formed at 110 °C. Compounds 1, 2, 4, 5 and 7 have been characterized by X-ray diffraction studies.
Graphical abstractThe reactivity of pySSnPh3 with triruthenium and triosmium carbonyl clusters has been investigated. A number of novel clusters enriched with tin and sulfur donor ligands have been obtained.Figure optionsDownload full-size imageDownload as PowerPoint slideHighlights► Tin–sulfur bond cleavage of pySSnPh3 at triruthenium and triosmium centres. ► Synthesis of heterometallic clusters. ► Synthesis of butterfly clusters.