Article ID Journal Published Year Pages File Type
1328969 Journal of Solid State Chemistry 2015 8 Pages PDF
Abstract

•K3Y(VO4)2 codoped with Er, Tm, or Ho:Yb were synthesized via solid-state and hydrothermal routes.•Upconversion properties are investigated.•The codoped compounds revealed efficient infrared-to-visible upconversion.•The presented compounds are potential host for solid state lighting.

The synthesis and upconversion properties of trigonal glaserite-type K3Y(VO4)2 co-doped with Er3+/Yb3+, Ho3+/Yb3+, or Tm3+/Yb3+ were studied. Powder samples were synthesized by solid state reactions at 1000 °C for 48 h, while well-formed hexagonal single crystals of the same were grown hydrothermally using 10 M K2CO3 at 560–650 °C. Infrared-to-visible upconversion by Er3+/Yb3+, Ho3+/Yb3+, or Tm3+/Yb3+ codoped-K3Y(VO4)2 glaserite powder and single crystals was observed, and the upconversion spectral properties were studied as a function of different Er3+, Tm3+, Ho3+, and Yb3+ ion concentrations. The process is observed under 980 nm laser diode excitation and leads to strong green (552 nm) and red (659 nm) emission for Er3+/Yb3+, green (549 nm) and red (664 nm) emission for Ho3+/Yb3+, and blue (475 nm) and red (647 nm) emission for Tm3+/Yb3+. The main mechanism that allows for up-conversion is attributed the energy transfer among Yb3+ and the various Er3+/Ho3+/Tm3+ ions in excited states. These results illustrate the large potential of co-doped alkali double vanadates for photonic applications involving optoelectronics devices.

Graphical abstractSynthesis and upconversion in vanadate glaserites.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , ,