Article ID Journal Published Year Pages File Type
1329168 Journal of Solid State Chemistry 2010 7 Pages PDF
Abstract

The title compounds have been obtained by solid state reactions of the corresponding pure elements at high temperature, and structurally characterized by single-crystal X-ray diffraction studies. Yb5Ni4Sn10 adopts the Sc5Co4Si10 structure type and crystallizes in the tetragonal space group P4/mbm (No. 127) with cell parameters of a=13.785(4) Å, c=4.492 (2) Å, V=853.7(5) Å3, and Z=2. Yb7Ni4Sn13 is isostructural with Yb7Co4InGe12 and crystallizes in the tetragonal space group P4/m (No. 83) with cell parameters of a=11.1429(6) Å, c=4.5318(4) Å, V=562.69(7) Å3, and Z=1. Both structures feature three-dimensional (3D) frameworks based on three different types of one-dimensional (1D) channels, which are occupied by the Yb atoms. Electronic structure calculations based on density functional theory (DFT) indicate that both compounds are metallic. These results are in agreement with those from temperature-dependent resistivity and magnetic susceptibility measurements.

Graphical abstractTwo new ytterbium nickel stannides, namely, Yb5Ni4Sn10 and Yb7Ni4Sn13, have been synthesized and structurally characterized by single-crystal X-ray diffraction studies. Both their structures feature three-dimensional (3D) frameworks based on three different types of one-dimensional (1D) channels, which are situated by all the Yb atoms. Electronic structure calculations based on density functional theory (DFT) indicate that both compounds are metallic, which are in accordance with the results from temperature-dependent resistivity and magnetic susceptibility measurements.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , , ,