Article ID Journal Published Year Pages File Type
1329215 Journal of Solid State Chemistry 2009 6 Pages PDF
Abstract

A solid-state rapid metathesis reaction was performed in a bed of sodium silicofluoride (Na2SiF6) and sodium azide (NaN3) powders diluted with sodium fluoride (NaF), to produce silicon nanoparticles. After a local ignition of Na2SiF6+4NaN3+kNaF mixture (here k is mole number of NaF), the reaction proceeded in a self-sustaining combustion mode developing high temperatures (950–1000 °C) on very short time scales (a few seconds). Silicon nanoparticles prepared by the combustion process was easily separated from the salt byproducts by simple washing with distilled water. The structural and morphological studies on the nanoparticles were carried out using X-ray diffractometer (XRD) and field emission scanning electron microscope (FESEM). The mean size of silicon particles calculated from the FESEM image was about 37.75 nm. FESEM analysis also shows that the final purified product contains a noticeable amount of silicon fibers, dendrites and blocks, along with nanoparticles. The mechanism of Si nanostructures formation is discussed and a simple model for interpretation of experimental results is proposed.

Graphical abstractSilicon nanoparticles 37.75 nm in mean diameter was obtained by rapid metathesis reaction performed in Na2SiF6+4NaN3 powder bed diluted with NaF.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , ,