Article ID Journal Published Year Pages File Type
1329567 Journal of Solid State Chemistry 2009 6 Pages PDF
Abstract

This paper reports the preparation and photocatalytic performance of Bismuth vanadate (BiVO4) by a facile and inexpensive approach. An amorphous BiVO4 was first prepared by a co-precipitation process from aqueous solutions of Bi(NO3)3 and NH4VO3 using ammonia. Followed by heating treatment at various temperatures, the amorphous phase converted to crystalline BiVO4 with a structure between monoclinic and tetragonal scheelite. The crystallization of BiVO4 occurred at about 523 K, while the nanocrystalline BiVO4 were formed with a heat-treatment of lower than 673 K. However, when the heat-treatment was carried out at 773 K, the accumulation of nanocrystals to bulk particles was observed. The photocatalytic performances of the materials were investigated by O2 evolution under visible-light, and MB decomposition under solar simulator. The results demonstrated that the crystalline structure is still the vital factor for the activities of both reactions. However, the crystallinity of BiVO4 gives a major influence on the activity of O2 evolution, whereas the surface area, plays an important role for photocatalytic MB decomposition.

BiVO4 was prepared by a co-precipitation process using aqueous ammonia solution, followed by heating treatment at various temperatures. The crystalline structure and crystallization process, and their influences on photocatalytic O2 evolution and organic pollutants degradation were investigated. It demonstrated that the crystalline structure is still the vital factor for the activities of both reactions. However, the crystallinity of BiVO4 gives a major influence on the activity of O2 evolution, whereas the surface area, plays an important role for photocatalytic MB decomposition. Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , ,