Article ID Journal Published Year Pages File Type
1330956 Journal of Solid State Chemistry 2009 5 Pages PDF
Abstract

We apply in-situ synchrotron X-ray diffraction to study the transformation of calcium monosulfoaluminate 14-hydrate Ca4Al2O6(SO4)·14H2O [monosulfate-14] to hydrogarnet Ca3Al2(OH)12 on the saturated water vapor pressure curve up to 250 °C. We use an aqueous slurry of synthetic ettringite Ca6Al2(SO4)3(OH)12·26H2O as the starting material; on heating, this decomposes at about 115 °C to form monosulfate-14 and bassanite CaSO4·0.5H2O. Above 170 °C monosulfate-14 diffraction peaks slowly diminish in intensity, perhaps as a result of loss of crystallinity and the formation of an X-ray amorphous meta-monosulfate. Hydrogarnet nucleates only at temperatures above 210 °C. Bassanite transforms to β-anhydrite (insoluble anhydrite) at about 230 °C and this transformation is accompanied by a second burst of hydrogarnet growth. The transformation pathway is more complex than previously thought. The mapping of the transformation pathway shows the value of rapid in-situ time-resolved synchrotron diffraction.

Graphical abstractWe use in-situ synchrotron diffraction to observe the decomposition of layer compound calcium monosulfoaluminate 14-hydrate (left) to form hydrogarnet (right)and β-anhydrite under hydrothermal conditions.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , ,