Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1331139 | Journal of Solid State Chemistry | 2010 | 7 Pages |
X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy (XANES) have been applied to examine the electronic structure of the rare-earth transition-metal oxyarsenides REFeAsO (RE=Ce, Pr, Nd, Sm, Gd) and CeNiAsO. Within the metal–arsenic layer [MAs], the bonding character is predominantly covalent and the As atoms are anionic, as implied by the small energy shifts in the M 2p and As 3d XPS spectra. Within the rare-earth–oxygen layer [REO], the bonding character is predominantly ionic, as implied by the similarity of the O 1s binding energies to those in highly ionic oxides. Substitution with a smaller RE element increases the O 1s binding energy, a result of an enhanced Madelung potential. The Ce 3d XPS and Ce L3-edge XANES spectra have lineshapes and energies that confirm the presence of trivalent cerium in CeFeAsO and CeNiAsO. A population analysis of the valence band spectrum of CeNiAsO supports the formal charge assignment [Ce3+O2−][Ni2+As3−].
Graphical abstractIn the rare-earth oxyarsenides REFeAsO, the oxygen 1s binding energy increases upon substitution with a smaller RE metal (from La to Gd).Figure optionsDownload full-size imageDownload as PowerPoint slide