Article ID Journal Published Year Pages File Type
1331227 Journal of Solid State Chemistry 2013 7 Pages PDF
Abstract

Interatomic potentials recently developed for the modelling of BaTiO3 have been used to explore the stabilisation of the hexagonal polymorph of BaTiO3 by doping with transition metals (namely Mn, Co, Fe and Ni) at the Ti-site. Classical simulations have been completed on both the cubic and hexagonal polymorphs to investigate the energetic consequences of transition metal doping on each polymorph. Ti-site charge compensation mechanisms have been used for the multi-valent transition metal ions and cluster binding energies have been considered. Simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. This energetic difference between the two polymorphs is true for all transition metals tested and all charge states and in the case of tri- and tetra-valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions as observed experimentally. Oxidation during incorporation of Ni2+ and Fe3+ ions has also been considered.

Graphical abstractThe representation of the strongest binding energy clusters for tri-valent dopants—(a) Ti2/O1 cluster and (b) Ti2/O2 cluster.Figure optionsDownload full-size imageDownload as PowerPoint slideHighlights► Classical simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. ► This energetic difference between the two polymorphs is true for all transition metals tested and all charge states. ► In the case of tri- and tetra- valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions.

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , ,