Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1331404 | Journal of Solid State Chemistry | 2013 | 7 Pages |
The high-resolution transmission electron microscopy (HR-TEM) is used to study, in situ, spatially resolved decomposition in individual nanocrystals of metal hydroxides and oxyhydroxides. This case study reports on the decomposition of indium hydroxide (c-In(OH)3) to bixbyite-type indium oxide (c-In2O3). The electron beam is focused onto a single cube-shaped In(OH)3 crystal of {100} morphology with ca. 35 nm edge length and a sequence of HR-TEM images was recorded during electron beam irradiation. The frame-by-frame analysis of video sequences allows for the in situ, time-resolved observation of the shape and orientation of the transformed crystals, which in turn enables the evaluation of the kinetics of c-In2O3 crystallization. Supplementary material (video of the transformation) related to this article can be found online at 10.1016/j.jssc.2012.09.022. After irradiation the shape of the parent cube-shaped crystal is preserved, however, its linear dimension (edge) is reduced by the factor 1.20. The corresponding spotted selected area electron diffraction (SAED) pattern representing zone [001] of c-In(OH)3 is transformed to a diffuse strongly textured ring-like pattern of c-In2O3 that indicates the transformed cube is no longer a single crystal but is disintegrated into individual c-In2O3 domains with the size of about 5–10 nm. The induction time of approximately 15 s is estimated from the time-resolved Fourier transforms. The volume fraction of the transformed phase (c-In2O3), calculated from the shrinkage of the parent c-In(OH)3 crystal in the recorded HR-TEM images, is used as a measure of the kinetics of c-In2O3 crystallization within the framework of Avrami–Erofeev formalism. The Avrami exponent of ∼3 is characteristic for a reaction mechanism with fast nucleation at the beginning of the reaction and subsequent three-dimensional growth of nuclei with a constant growth rate. The structural transformation path in reconstructive decomposition of c-In(OH)3 to c-In2O3 is discussed in terms of (i) the displacement of hydrogen atoms that lead to breaking the hydrogen bond between OH groups of [In(OH)6] octahedra and finally to their destabilization and (ii) transformation of the vertices-shared indium–oxygen octahedra in c-In(OH)3 to vertices- and edge-shared octahedra in c-In2O3.
Graphical abstractFrame-by-frame analysis of video sequences recorded of HR-TEM images reveals that a single cube-shaped In(OH)3 nanocrystal with {100} morphology decomposes into bixbyite-type In2O3 domains while being imaged. The mechanism of this decomposition is evaluated through the analysis of the structural relationship between initial (c-In(OH)3) and transformed (c-In2O3) phases and though the kinetics of the decomposition followed via the time-resolved shrinkage of the initial crystal of indium hydroxide.Figure optionsDownload full-size imageDownload as PowerPoint slideHighlights► In-situ time-resolved High Resolution Transmission Electron Microscopy. ► Crystallographic transformation path. ► Kinetics of the decomposition in one nanocrystal.