Article ID Journal Published Year Pages File Type
1331453 Journal of Solid State Chemistry 2007 8 Pages PDF
Abstract

The chemical and physical compatibility of SrCeO3 is investigated with respect to LaMO3 (M=Mn, Fe, Co) and La2−xSrxNiO4 (x=0, 0.8), via the reaction of fine-grained powder compacts and solid-state diffusion couples. Compositions were chosen so as to give predictive insight into possible candidate materials for all-oxide electrochemical devices. Results show the primary reaction in these systems to be the dissolution of SrO from SrCeO3 into the LaMO3/La2−xSrxNiO4, and corresponding formation of La-doped CeO2. Reaction kinetics are observed to be relatively fast, with element profiles suggesting the diffusion of Sr2+ in ceria to be surprisingly rapid. It is demonstrated that perovskite starting materials represent poor candidates for use with SrCeO3, reacting completely to form Ruddlesden-Popper/K2NiF4 type oxides. Reaction with La2NiO4 is less pronounced, and formation of secondary phases suppressed for the composition La1.2Sr0.8NiO4. It is thus concluded that Ruddlesden-Popper type oxides represent good candidate materials for use with a SrCeO3-based electrolytes when doped with appropriate levels of Sr.

Graphical abstractAssessment of the SrCeO3 proton conductor shows this material to have poor chemical compatibility with LaMO3 perovskite systems, but predicts coexistence with Ruddlesden-Popper type oxides.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, ,