Article ID Journal Published Year Pages File Type
1331939 Journal of Solid State Chemistry 2006 8 Pages PDF
Abstract

The BaMoO4 nanopowders were prepared by the Complex Polymerization Method (CPM). The structure properties of the BaMoO4 powders were characterized by FTIR transmittance spectra, X-ray diffraction (XRD), Raman spectra, photoluminescence spectra (PL) and high-resolution scanning electron microscopy (HR-SEM). The XRD, FTIR and Raman data showed that BaMoO4 at 300 °C was disordered. At 400 °C and higher temperature, BaMoO4 crystalline scheelite-type phases could be identified, without the presence of additional phases, according to the XRD, FTIR and Raman data. The calculated average crystallite sizes, calculated by XRD, around 40 nm, showed the tendency to increase with the temperature. The crystallite sizes, obtained by HR-SEM, were around of 40–50 nm. The sample that presented the highest intensity of the red emission band was the one heat treated at 400 °C for 2 h, and the sample that displayed the highest intensity of the green emission band was the one heat treated at 700 °C for 2 h. The CPM was shown to be a low cost route for the production of BaMoO4 nanopowders, with the advantages of lower temperature, smaller time and reduced cost. The optical properties observed for BaMoO4 nanopowders suggested that this material is a highly promising candidate for photoluminescent applications.

Graphical abstractHR-SEM micrograph of BaMoO4 nanopowders heat treated at 700 °C for 2 h.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , , , ,