Article ID Journal Published Year Pages File Type
1332040 Journal of Solid State Chemistry 2008 8 Pages PDF
Abstract

Serial of trimethylsilyl-carboxyl bifunctionalized SBA-15 (TMS/COOH/SBA-15) have been studied as carriers for controlled release of drug famotidine (Famo). To load Famo with large capacity, SBA-15 with high content of carboxyl groups was successfully synthesized by one-pot synthesis under the assistance of KCl. The mesostructure of carboxyl functionalized SBA-15 (COOH/SBA-15) could still be kept even though the content of carboxyl groups was up to 57.2%. Increasing carboxyl content could effectively enhance the loading capacity of Famo. Compared with pure SBA-15, into which Famo could be hardly adsorbed, the largest drug loading capacity of COOH/SBA-15 could achieve 396.9 mg/g. The release of Famo from mesoporous silica was studied in simulated intestine fluid (SIF, pH=7.4). For COOH/SBA-15, the release rate of Famo decreased with narrowing pore size. After grafting TMS groups on the surface of COOH/SBA-15 with hexamethyldisilazane, the release of Famo was greatly delayed with the increasing content of TMS groups.

Graphical abstractTrimethylsilyl-carboxyl bifunctionalized SBA-15 has been studied as carrier for controlled release of drug famotidine. To load drug with large capacity, SBA-15 with high content of carboxyl groups was successfully synthesized. After grafting trimethylsilyl groups on the surface of carboxyl functionalized SBA-15, the release of Famo was greatly delayed with the increasing content of TMS groups.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , , , ,