Article ID Journal Published Year Pages File Type
1332477 Journal of Solid State Chemistry 2008 10 Pages PDF
Abstract

Alkali and ammonium cobalt and zinc phosphates show extensive polymorphism. Thermal behavior, relative stabilities, and enthalpies of formation of KCoPO4, RbCoPO4, NH4CoPO4, and NH4ZnPO4 polymorphs are studied by differential scanning calorimetry, high-temperature oxide melt solution calorimetry, and acid solution calorimetry.α-KCoPO4 and γ-KCoPO4 are very similar in enthalpy. γ-KCoPO4 slowly transforms to α-KCoPO4 near 673 K. The high-temperature phase, β-KCoPO4, is 5–7 kJ mol−1 higher in enthalpy than α-KCoPO4 and γ-KCoPO4. HEX phases of NH4CoPO4 and NH4ZnPO4 are about 3 kJ mol−1 lower in enthalpy than the corresponding ABW phases. There is a strong relationship between enthalpy of formation from oxides and acid–base interaction for cobalt and zinc phosphates and also for aluminosilicates with related frameworks. Cobalt and zinc phosphates exhibit similar trends in enthalpies of formation from oxides as aluminosilicates, but their enthalpies of formation from oxides are more exothermic because of their stronger acid–base interactions. Enthalpies of formation from ammonia and oxides of NH4CoPO4 and NH4ZnPO4 are similar, reflecting the similar basicity of CoO and ZnO.

Graphical abstractRelationship between enthalpy of formation from oxides and acid–base interaction for cobalt phosphates, zinc phosphates, and aluminosilicates with related frameworks. They exhibit similar trends, but the enthalpies of formation of phosphates are more exothermic than those of aluminosilicates because of stronger acid–base interactions.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, ,