Article ID Journal Published Year Pages File Type
1332609 Journal of Solid State Chemistry 2010 9 Pages PDF
Abstract

The compound N1-[3-(trimethoxysilyl)propyl]diethylenetriamine was anchored onto Amazon kaolinite surface by heterogeneous route. The modified and natural kaolinite samples were characterized by transmission electron microscopy, scanning electron microscopic, X-ray diffraction, and nuclear magnetic nuclei of 29Si and 13C. The well-defined peaks obtained in the 13C NMR spectrum in the 5.0–62.1 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The ability of these materials to remove U(VI) from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 4.0. The kinetic parameters analyzed by the Lagergren and Elovich models gave a good fit for a pseudo-second order reaction with k2 values 16.0 and 25.1 mmol g−1 min−1 ranges for natural and modified kaolinite clays, respectively. The energetic effects caused by metal ion adsorption were determined through calorimetric titrations.

Graphical abstractThis investigation reports the use of original and modified kaolinites as alternative absorbents. The compound N-[3-trimethoxysilyl)propyl]diethylenetriamine was anchored onto Amazon kaolinite surface by heterogeneous route.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , ,