Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1333238 | Journal of Solid State Chemistry | 2010 | 8 Pages |
Polycrystalline samples of two complex intermetallic borides Zr2Fe1−δRu5+δB2 and Zr2Fe1−δ(Ru1−xRhx)5+δB2 (δ=ca. 0.10; x=0.20) were synthesized by high-temperature methods and characterized by single-crystal X-ray diffraction, energy dispersive spectroscopy, and magnetization measurements. Both structures are variants of Sc2Fe(Ru1−xRhx)5B2 and crystallize in the space group P4/mbm (no. 127) with the Ti3Co5B2-type structure. These structures contain single-atom, Fe-rich Fe/Ru or Fe/Ru/Rh chains along the c-axis with an interatomic metal-metal distance of 3.078(1) Å, a feature which makes them viable for possible low-dimensional temperature-dependent magnetic behavior. Magnetization measurements indicated weak ferrimagnetic ordering with ordering temperatures ca. 230 K for both specimens. Tight-binding electronic structure calculations on a model “Zr2FeRu5B2” using LDA yielded a narrow peak at the Fermi level assigned to Fe–Fe antibonding interactions along the c-axis, a result that indicates an electronic instability toward ferromagnetic coupling along these chains. Spin-polarized calculations of various magnetic models were examined to identify possible magnetic ordering within and between the single-atom, Fe-rich chains.
Graphical abstractZr2FeRu5−xRhxB2 (x=0, 1) crystallizes with magnetic atoms forming chains which have been shown to order magnetically depending on the total valence electron count. Magnetic measurements and tight-binding electronic structure calculations are employed to investigate the ordering.Figure optionsDownload full-size imageDownload as PowerPoint slide