Article ID Journal Published Year Pages File Type
1333386 Journal of Solid State Chemistry 2010 6 Pages PDF
Abstract

A novel luminescent hybrid bimodal mesoporous silicas (LHBMS) were synthesized via grafting 1,8-Naphthalic anhydride into the pore channels of bimodal mesoporous silicas (BMMs) for the first time. The resulting samples were characterized by powder X-ray diffraction (XRD), N2 adsorption/desorption measurement, Fourier transform infrared spectroscopy (FT-IR), Transmission electron microscopy (TEM), UV–vis absorption spectroscopy, and Photoluminescence spectroscopy (PL). The results show that 1,8-Naphthalic anhydride organic groups have been successfully introduced into the mesopores of the BMMs and the hybrid silicas are of bimodal mesoporous structure with the ordered small mesopores of around 3 nm and the large mesopores of uniform intra-nanoparticle. The excellent photoluminescent performance of LHBMS has a blue shift compared to that of 2-[3-(triethoxysilyl) propyl-1 H-Benz [de]isoquinoline-1, 3(2 H)-dione, suggesting the existence of the quantum confinement effectiveness.

Graphical abstractA novel luminescent hybrid bimodal mesoporous silicas was synthesized via modification and then grafting with 1, 8-Naphthalic anhydride, which would be strong potential application in the photoluminescent fields.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , ,