Article ID Journal Published Year Pages File Type
1333526 Journal of Solid State Chemistry 2006 10 Pages PDF
Abstract

CeO2 doped with praseodymium, neodymium and/or zirconium atoms were prepared by coprecipitation and by the sol–gel method. Structural properties were investigated by in situ XRD and Raman spectroscopy while oxygen storage capacity (OSC) was measured by transient CO oxidation. All the compounds, except pure Nd2O3, have a fluorite-type structure as well as a Raman band at 560 cm−1 characteristic of the oxygen vacancies involving non-stoichiometric oxides. The lattice parameter under hydrogen, being dependent on the temperature, revealed two reduction mechanisms: one at a low temperature at the surface and another at a high temperature in the bulk. Ce–Nd binary oxides show a strong tendency towards crystallite aggregation, which reduces accessibility to gases and OSC properties. Zirconium improves the thermal resistance to sintering of both Ce–Nd and Ce–Pr oxides. The Zr–Ce–Pr–O followed by Zr–Ce–Nd–O compounds displaying high oxygen mobility at a low temperature, appear to be very promising for practical applications such as OSC materials.

Graphical abstractVariation of oxygen vacancies under hydrogen on ternary oxides.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , , ,