Article ID Journal Published Year Pages File Type
1333651 Journal of Solid State Chemistry 2008 7 Pages PDF
Abstract

This article focuses on two different approaches to create nanoscale transition metal chalcogenide materials. First, we used chemical nanofabrication, a combination of top-down patterning and bottom-up solid-state synthesis, to achieve control over the shape, size, and ordering of the patterned nanomaterials. We demonstrated orientational control over nanocrystals within sub-300 nm patterns of MoS2 and formed free-standing nanostructures of crystalline NiS2. In addition, crossed line arrays of mixed metal chalcogenide nanostructures were achieved, and TaS2 nanopatterns were made by the chemical transformation of tantalum oxide templates. Second, we developed a one-pot procedure using molecular precursors to synthesize two-dimensional NbSe2, TaS2 and TaSe2 nanoplates and one-dimensional NbSe2 wires depending on the relative amount of surfactants in the reaction mixture. Prospects for these transition metal chalcogenide nanomaterials with controlled shapes and morphologies will be discussed.

Graphical abstractThis paper describes how transition metal chalcogenide nanomaterials can be produced by two approaches. First, chemical nanofabrication—a combination of top-down patterning and bottom-up solid-state synthesis—was used to achieve control over the shape, size, and ordering of patterned nanomaterials. Second, a one-pot procedure using molecular precursors was developed to synthesize two-dimensional nanoplates and one-dimensional nanowires of conducting transition metal dichalcogenides.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , ,