Article ID Journal Published Year Pages File Type
1333764 Journal of Solid State Chemistry 2008 10 Pages PDF
Abstract

SrMoO4 was studied under compression up to 25 GPa by angle-dispersive X-ray diffraction. A phase transition was observed from the scheelite-structured ambient phase (space group I41/a) to a monoclinic fergusonite phase (space group I2/a) at 12.2(9) GPa. The unit-cell parameters of the high-pressure phase are a=5.265(9) Å, b=11.191(9) Å, c=5.195 (5) Å, and β=90.9(1)°, Z=4 at 13.1 GPa. There is no significant volume collapse at the phase transition. No additional phase transitions were observed and on release of pressure the initial phase is recovered, implying that the observed structural modifications are reversible. The reported transition appeared to be a ferroelastic second-order transformation producing a structure that is a monoclinic distortion of the low-pressure phase and was previously observed in compounds isostructural to SrMoO4. A possible mechanism for the transition is proposed and its character is discussed in terms of the present data and the Landau theory. Finally, the room temperature equation of states is reported and the anisotropic compressibility of the studied crystal is discussed in terms of the compression of the Sr–O and Mo–O bonds.

Graphical abstractThe evolution of the structure of SrMoO4 upon compression was established using synchrotron X-ray diffraction and a diamond-anvil cell. A pressure-induced phase transition was found involving a symmetry decrease from tetragonal to monoclinic. A transition mechanism is proposed and its ferroelastic character is discussed in terms of the Landau theory.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , ,