Article ID Journal Published Year Pages File Type
1333989 Journal of Solid State Chemistry 2006 6 Pages PDF
Abstract

The title compounds were prepared by arc-melting pre-annealed mixtures of Ti, Mo, and As. Both Ti2MoAs2 and Ti3MoAs3 adopt structures formed by the corresponding binary vanadium arsenides, V3As2 and β-V4As3. Ti2MoAs2 crystallizes in the tetragonal space group P4/m, with a=9.706(4) Å, c=3.451(2) Å, V=325.1(3) Å3 (Z=4), and Ti3MoAs3 in the monoclinic space group C2/m, with a=14.107(3) Å, b=3.5148(7) Å, c=9.522(2) Å, β=100.66(3)°, V=464.0(2) Å3 (Z=4). In both cases, the metal atoms form infinite chains of trans edge-condensed octahedra, and the As atoms are located in (capped) trigonal prismatic voids. While most metal atom sites exhibit mixed Ti/Mo occupancies, the Mo atoms prefer the sites with more metal atom and fewer As atom neighbors. Ti2MoAs2 and Ti3MoAs3 are metallic entropy-stabilized materials that decompose upon annealing at intermediate temperatures.

Graphical abstractThe two title compounds (shown here: Ti2MoAs2) simulate vanadium arsenides by Ti/Mo mixtures on the original V sites (M1–M5).Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , ,