Article ID Journal Published Year Pages File Type
13420534 Engineering Structures 2020 15 Pages PDF
Abstract
This paper discusses the application of six different machine learning techniques on forecasting the structural behavior of gravity dams. Various time-, frequency-, and intensity-dependent characteristics are extracted from ground motion signals and used in machine learning. A large set of about 2000 real ground motions are used, each includes about 35 meta-features. The major outcome of this study is to show the applicability of meta-modeling-based UQ in seismic safety evaluation of dams. As an intermediary result, the advantages of different machine learning algorithms, as well as meta-feature selection possibility is discussed for the current dataset. This paper proposes a feasibility study to reduce the computational costs in UQ of large-scale infra-structural systems.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, ,